

CCC Centro de Genómica Nutricional Agroacuícola MEJORES ALIMENTOS MEJOR SALUD

Lupinus luteus breeding in Chile: An opportunity for sustainable agriculture and the development of new products for healthy food and feed industries

Nicole Lichtin Schythe, Annally Rupayan Riquelme, Fernando Westermeyer Figueroa, Bradley Till and Haroldo Salvo-Garrido

Outline

Introduction

1

2

3

4

L. luteus breeding in Chile: general goal and genetic strategies

Some achievements so far

3.1 Mapping and yield potential in advanced lines

3.2

Technological products for healthy food industry and aquaculture

Conclusions / Projections

Outline

Introduction

1

Strategy of mission oriented science in Chile

Plant Science

Science and Food Technology

Development and technology transfer

www.cgna.cl

Why plant proteins ?

Source: Innova Market Insights, 2017

Outline

2

L. luteus breeding in Chile: General goal and genetic strategies

General goal of *L. luteus* breeding:

- To better adapt *L. lutes* in Chile in order to contribute to plant protein production, sustainable agriculture and the development of new products for healthy food and feed industries with added value.
 - Improve yield and seed protein content, specially under small farmer producer.
 - Flowering time and resistance to anthracnose, are ones of the key traits under studies
 - Piloting and packaging of technological products with added value: Healty food industries and aquaculture.

Which are our Genetic strategies ?

- Germplasm collections to explore genetic variability
- Development of magic population to explore important QTLs related to agronomic, food and feed quality traits, at different locations
- Development of mapping populations to study and map important genes and to assist breeding.
- Mutation breeding

Outline

Some achievements so far

3.1 Mapping and yield potential in advanced lines

DTF genes in L. luteus is controlled by Flowering Locus T homologous

Blast result showed that marker **SCA 43802** was homologous to the FT genes from *L. angustifolius* (e-Value: 0,0) (NCBI).

To confirm the presence of this homologous FT genes, a set of markers mapped on the LG of *L.* angustifolius ligated to DTF QTL were mapped on an F_2 *L. lutes* population of 190 individuals to develop the *L. luteus* LG.

High collinearity was observed

DTF genes in *L. luteus* is controlled by *Flowering Locus T* homologous

A single DTF QTL was mapped and the highest LOD score (88) was at the locus **SCA 43802**, confirming that DTF is controlling by same gene in *L. luteus* and *L. angustifolius*.

This marker co-segregate with the trait

Anthracnosis resistance

•To evaluate and map anthracnose resistance genes in *L. lutes*, same approach of DTF was carried out.

NLL-11

Blast results showed that the **SCAFFOLD 82470** from *L. luteus* is homologous to Lanr1 of *L. angustinfolius* (e-value: 0.0; NCBI).

Anthracnosis resistance

- To evaluate gene function same F₂ population of 290 individuals was genotyped with the marker sca82470.
- Each F₂ individual was inoculated at *in vitro* condition (Muñoz, 2011) to evaluate resistance to anthracnose. Detailed information is showed in the poster section.
- The anthracnose resistance segregated 3:1, indicating a strong genetic effect associated to this trait in this population.
- The marker sca82470 co-segregated with the trait, indicating that *L. luteus* and *L. angustifolius* share same genes for anthracnose resistance.

CGNA

High yielding advanced lines

• To evaluate yield potential, advanced lines are evaluated under randomized experimental design at different locations

High yielding advanced lines

Mean yield 2017/2019 (kg/ha)

Advanced lines and controls

Dehulled seed protein content: 61 - 64% (DM) Industrial yield: 78% a 80%

3

Some achievements so far

Technological products for healthy food industry and aquaculture

Piloting and packaging of technological products with added values for a healthy food industry and aquaculture

Specification	Unit	Value*			
Energy	kcal/kg	3.443			
Protein content	%	60,0 (± 2)	Aquaculture and other uses		
Soluble protein	%	83,8			
Amino acid profile	-				
Aspartic acid	%	5,09 (± 0,31)			
Glutamic acid	%	11,4 (± 0,8)			
Alanine	%	1,56 (± 0,09)			
Arginine	%	5,87 (± 0,35)	Crit AluDrot CCNA		
Phenylalanine	%	1,86 (± 0,11)	GIIL AIUPIOL-CGNA		
Glycine	%	1,88 (± 0,13)			
Histidine	%	1,35 (± 0,14)			
Isoleucine	%	1,84 (± 0,15)			
Leucine	%	3,78 (± 0,30)	Aminoacids profile		
Lysine	%	2,38 (± 0,19)			
Proline	%	1,94 (± 0,16)			
Serine	%	2,45 (± 0,17)			
Tyrosine	%	1,40 (± 0,15)			
Threonine	%	1,55 (± 0,09)			
Valina	%	1,73 (± 0,14)			
Cysteine + Cystine	%	1,03 (± 0,10)			
Methionine	%	0,251 (± 0,025)			
Tryptophan	%	0,377 (± 0,029)			
			A A A A A A A A A A A A A A A A A A A		
Total carbohydrate	%	30,0			
Total dietary fibre	%	17,0			
Crude fibre	%	8,0			
Total fat	%	5,5			
Ashes	%	4,5			
Total alkaloids	%	0,0036 - 0,038	Tecnología CGNA [®]		
Total carotenoids	mg/100 g	10 - 12			

Ultra*Prot*-cgna®

UltraProt-CGNA®

Ingrediente proteico funcional

Componentes	(%)
Humedad	4,8
Proteína	91-95
Fibra dietaria	0,1
Materia grasa	4,8
Cenizas	3,5
Hidratos de Carbono	0,1
Energía (Kcal/kg)	4016,0

Imágenes de microscopía de micro-capsulas

(Burgos-Díaz et al., 2015; 2017)

SustiLact-CGNA® : Non-dairy drink for the feeding of dairy calves

Contains

Extruded grit AluProt-CGNA Low fiber cereals Plant oil Vitamin core

It is made up via cavitation technology.

A Start-Up company is on the way...

Specification	Unit	Value*
Energy	kcal / kg	4,852
Protein content	%	29,5
Total carbohydrate	%	44,7
Fibre crude	%	1,0
Total fat	%	22,0
Ashes	%	3,8

*: Dry matter

Conclusions / Projections

4

Conclusions/Projections

- Important agronomic traits have been identify and mapped in *L. luteus* genome, which has been crucial to better adapt it in Chile. A GBS is nearly finished with focus in 15,000 polymorphic SNPs.
- A new variety is nearly there. We are quite optimistic of its agronomic and industrial projections.
- 15 technological products have been developed. Four are already in the market (three are food matrix protein base, like Premix). One of them is for people with celiac disease.
- A project is being carried out to deliver textured "lupine meat" and a cereal bar with high protein content.
- Our food science people are struggling to deliver a non-dairy protein drink with lupin protein isolate together with microencapsulated fucoxanthin from brown seaweed.

Healthy food industry + Aquaculture : Is our goal for science & technology !

All of this is possible with public and private sector support

And collaboration from many people and Institutions

And our CGNA people

Many thank indeed !!!!

