The future of proteins in industrial food production what will be the part of lupin in this competition?

Market opportunities and challenges

XV International Lupin Conference

PD Dr. Peter EisnerDeputy Director

Fraunhofer-Institute for Process Engineering and Packaging

Cochabamba March 19, 2019

Challenges of the future

Population growth

Climate change

Much more people have to be fed on less arable land!

Current situation: Top 10. energy containing products in worldwide harvests (FAO 2016)

Product**)	Amount t/a	Digestable Energy kcal/a	Energy per person kcal/d*)	Protein per person g/d*)
1. Maize	1,060,107,470	3.7*10 ¹⁵	1355	34
2. Rice	740,961,445	2.6*10 ¹⁵	947	18
3. Wheat	749,460,077	2.5*10 ¹⁵	925	33
4. Soybeans	334,894,085	1.5*10 ¹⁵	546	44
5. Sugar cane	1,890,661,751	7.6*10 ¹⁴	276	-
6. Palm oil	63,931,710	5.8*10 ¹⁴	210	-
7. Barley	141,277,993	4.9*1014	181	6
8. Rapeseed	68,855,446	3.4*10 ¹⁴	126	6
9. Potatoes	376,826,967	2.9*10 ¹⁴	106	3
10. Sorghum	63,930,558	2.2*1014	82	2

*) based on 7.5 bn people

4,754

 $\frac{kcal}{person\ day}$

146

g Protein person day

Source: **) FAO-STAT, Data from 2016

TOTAL (141 Products): $1.47*10^{16}$ kcal/a: ~ 5,460 kcal/human and day

Already now: food for more than 17 billion (vegan living) people

But: shortage in resources and instable and high food prices

- Food- and agricultural waste
 - >100 Mio. Tons in the EU**)
 - 33% worldwide along all value added chains**)
- Production of animals (Ressource-Factor~1:5)

■ Meat*): 334 Mio. t/a

■ Milk*): 827 Mio. t/a

■ Eggs*): 87 Mio. t/a

■ Fish from Aquaculture*): 80 Mio. t/a

Use of agricultural goods for energy production

Sources: *) FAO-STAT, Data from 2017 / for Fish from 2016

**) European Commission, 2014

Worldwide use of agricultural raw materials

Source: (UBA 2014, Thrän 2015)

Our approach: Integrated use of plant seeds...

Vegetable raw materials Protein- and Oilseeds Production Purifying

High valuable **food/feed ingredients**

Technical raw materials

Clean bio-energy

Lupin, sunflower, soy, rapeseed, pea, linseed, cereals and by-products from food industry

Proteins, fibers, lipids, secondary plant metabolites, residues for energy use

... and: development of tasty foods from plant proteins

Substitution of animal proteins (milk, egg, meat)

Mayonnaise without egg

Vegan Drink without Casein

"vegan sausages " and "vegan meat"

Impact in the food market can only be achieved through high consumer acceptance

-> High requirements in functional and sensorial properties!

"healthy tasting vegan food" was yesterday

- indulgence is the new vegan approach

Wheat **Potato** Soy

Lupin: Lupinus angustifolius

Ongoing discussion about alternative protein sources

- in-vitro-meat
- Insects
- Microalgae
- Seaweeds
- New Ingredients from Lupins, other Pulses, Oilseeds and Cereals

So what's with lupin?

Example in Germany: Sweet Lupins (*L. angustifolius***)**

- Valuable legume with a high content of functional protein fractions
- Produced in Germany no long transport distances
- No GMO varieties
- **Increase of soil quality**

But:

Lupin is on the allergen list in the EU and Lupin meals are astringent, have a bitter taste and a beany and green flavor

Scientific and technical approach for lupin ingredients

- Selection of suitable Lupin-species and varieties concerning functionality and sensorial properties
- Identification of relevant flavor- and taste-active components
- Elucidation of the generation of off-flavors
- Development of a strategy for selective separation of unwanted flavors and components
- Realization in technical scale

Identification of flavors

Evaluation and extraction of flavors

No. a)	Geruchsstoff	Beschreibendes Geruchsattribut ^{b)}	FD-Faktor
1	1-Octen-3-on ^{e)}	nach Pilz	32
2	2-Acetyl-1-pyrrolin ^{d)}	nach Popcorn	32
3	(Z)-1,5-Octadien-3-on ^{d)}	nach Geranien, metallisch	128
4	3-Isopropyl-2-methoxypyrazin ^{e)}	nach Erbse, nach grüner Paprika	256
5	Essigsäure ^e)	nach Essig	32
6	Unbekannt	nach Erde	32
7	(Z)-2-Nonenal ^{e)}	nach Karton	32
8	3-Isobutyl-2-methoxypyrazin ^{e)}	nach grüner Paprika, nach Erde	32
9	(E)-2-Nonenal ^{e)}	nach Karton, fettig, grün	256
10	(E,Z)-2,6-Nonadienal ^{e)}	nach Gurke, grün	256
11	2-Methylbuttersäure/ 3-Methylbuttersäure ^{e)}	schweißig, fruchtig, nach Käse	2048
12	Unbekannt	nach Kunststoff	256
13	Pentansäure ^{e)}	nach Käse, schweißig, fruchtig	32
14	(E,E,Z)-2,4,6-Nonatrienal	nussig, nach Haferflocken	256
15	γ-Octalacton ^{e)}	nach Kokos, süßlich	64
16	4-(2,6,6-trimethyl-1-cyclohexenyl)-3-buten-2-on $(\beta$ -Ionon) $^{e)}$	nach Veilchen, blumig	512
17	3-Hydroxy-2-methyl-pyran-4-on (Maltol) ^{e)}	nach Karamell	256
18	trans-4,5-Epoxy-(E)-2-decenal ^{e)}	Metallisch	1024
19	γ-Nonalacton ^{e)}	nach Kokos, süßlich	256
20	Unbekannt	muffig, feucht	256
21	γ -Decalacton ^{d)}	nach Pfirsich, fruchtig	32
22	Unbekannt	phenolisch, würzig	64
23	3-Hydroxy-4,5-dimethyl-2(5H)-furanon (sotolon) ^{d)}	würzig, nach Suppe	256
24	Vanillin ^{e)}	nach Vanille, süßlich	1024
25	Phenylessigsäure ^{d)}	nach Bienenwachs, nach Honig	256

Technical Realization

Stations of Implementation

- 1989: first scientific work with lupins
- 2009: several trials of exploitation without success
- 2010: Founding of Prolupin GmbH out of Fraunhofer IVV
- 2011: Market launch of first product (lupin-ice-cream)
- **2013: Installation of industrial production in Grimmen**
- 2014: Development of new products such as milk, yoghurt, pudding, cheese, mayonnaise, dressings
- 2015: Start of marketing the new products via retail

Various applications for lupin protein

Lupin-Products – from our lab into the market

EIS

ERDBEER

EIS

VANILLE

MAYONNAISE NATUR

But: the protein isolate is too expensive for reaching a mass market today

DRINK NATUR

NUDELN FUSILLI

NUDELN **CELLENTANI**

JOGHURT-ALTERNATIVE HIMBEER

What to do for a positive future of lupins as ingredients?

- lower the costs of the process: higher protein yield, lower de-oiling costs, larger plant throughputs
- using all by-products (proteins, fibers, oil, SPM)
- look for new applications with high profit range or higher throughputs
- development of new cheaper protein ingredients, by
 - optimization of flavor and taste in meals and concentrates
 - extrusion or ethanol treatment of meals
- work on the allergen image

Lupin-Research at Fraunhofer IVV: functional ingredients from by-products such as nutritional fibers

- Research in optimization of nutritional added value of fibers and other fractions
- For bile acids relevant binding mechanisms of all fractions are under investigation
- Fibers show mechanisms to reduce mass transfer by effects of their viscosity
- Phenolic components seem to be responsible for binding effects of secondary bile acids
- Potential as a healthy ingredient

Lupin-Research at Fraunhofer: new applications

L. angustifolius

L. albus

L. mutabilis

- Choice of suitable lupin species: species with high conglutin α content like Lupinus angustifolius seem beneficial for yogurt
- Processing: intense heat treatment of lupin milk is beneficial regarding the texture of lupin yogurts
- Further fermented products such as cheese and others

Lupin-Research at Fraunhofer IVV: Allergenicity

- Intensive research in modification of protein isolates
 - Identification of process conditions leading to partly destruction of protein structure
 - Keeping in mind not to reduce the sensory properties of lupin protein preparations and trying to optimize flavor and taste
 - Defining process conditions for increasing the functional properties such as foaming and emulsifying for tailored applications
 - Testing the allergenicity reduction and creating evidence for declaration of "allergen reduced lupin proteins"

Lupin-research-summary: what might be the future?

- Realize a high valuable use of all by-products such as fibers, hulls, oligosaccharides, oil and all protein fractions -> reducing the price
- Using lupin protein in blended food protein combinations for optimized functionality, nutritional quality, flavor and taste
- For this approach: creating more simple and functional ingredients by integrated processes from kernels and de-oiled meal
 reducing the costs
- Further reduction of allergenicity to change the allergen declaration and image
- Testing more new species and varieties for new future markets -> collaboration

The future is healthy, the future is tasty...

Thank you very much for your attention!

PD Dr.-Ing. Peter Eisner Deputy Director

phone: +49 8161 491-400

email: peter.eisner@ivv.fraunhofer.de

