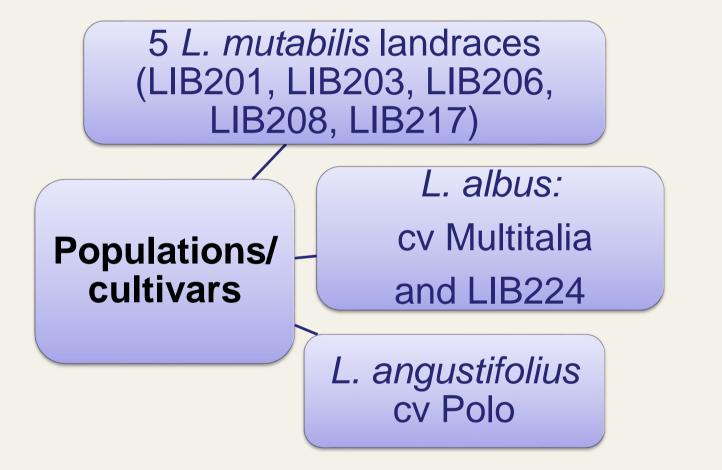
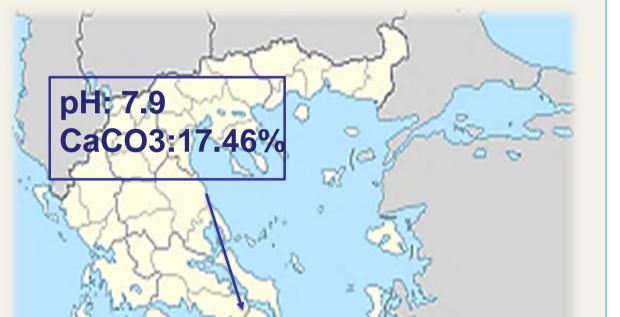


ASSESING PHENOTYPIC DIVERSITY OF LUPIN LANDRACES (Lupinus mutabilis Sweet)

Efstathia Lazaridi¹, Emmanouil Sideris¹, Eleni Tani¹, Kyriaki Sotirakoglou¹, João Neves Martins², Penelope J Bebeli¹

¹Agricultural University of Athens, Laboratory of Plant Breeding and Biometry, Iera Odos 75, 11855, Athens, Greece (bebeli@aua.gr) ²Universidade de Lisboa, Instituto Superior de Agronomia, Dpt. de Recursos Naturais, Ambiente e Território, Tapada da Ajuda, 1349-017, Lisboa, Portugal (nevesmartins@isa.ulisboa.pt


INTRODUCTION


Table 1. Traits with higher (green) and lower (purple) total, among and within populations diversity

seeds/pod	0.766	stem color	0.007
Jeeusipeu			

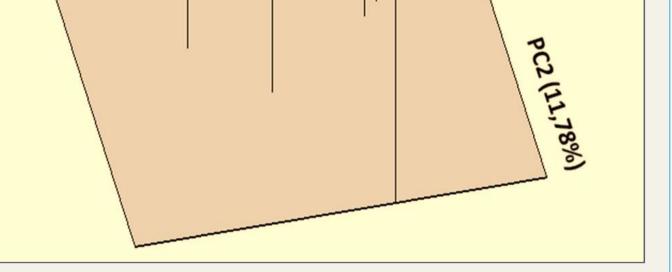
Lupins are known and cultivated by humans since antiquity. Lupinus angustifolius L. (narrow-leaf, blue lupin), L. albus L. (white lupin) and *L. luteus* L. (yellow lupin) are cultivated species of the Old World, and *L. mutabilis* Sweet (Andean lupin) is the New World cultivated species. Nowadays, L. *mutabilis* receives a renewed interest in developing varieties adapted in South European edapho-climatic conditions, as it grows well in poor soils and is a good source of protein, oil and biomass. For this reason, we aimed to assess the diversity of five L. mutabilis populations and preliminary evaluate them under a Mediterranean environment in comparison to two endemic lupin species.

MATERIALS AND METHODS

RCBD, 3 replicates, 45 plants

per population/ cultivar

Ht = 0.000-						
0.766	seed shape	0.726	primary seed color	0.023		
Gs <i>t</i> = 0.000- 0.985	stem waxiness	0.985	petiole color	0.048		
	standard petal heart color	0.975	seeds/pod	0.065		
Hs = 0.000- 0.975	seeds/pod	0.715	stem color	0.005		
	leaves color intensity	0.523	stem waxiness	0.007		


Different flower Figure 1. color types within population LIB206

- ✓ 48 agro- morphological traits
- Total phenotypic diversity (Ht)
- Inter-population (Gst)
- Intra- population phenotypic diversity (Hs) and average across all populations (Hs)
- Mean phenotypic diversity within each population across all traits (*Hp*) using Nei's genetic diversity index (*He*) (Nei, 1973)

RESULTS

- > Seed shape and number of seeds per pod were the traits that contributed most to the total phenotypic diversity of the collection (*Ht*).(**Table 1**).
- \succ Number of seeds per pod was the trait that ranged the most within each population (Hs = 0.715) (Table 1).
- \succ Two flower color types observed in LIB206 (Figure 1)
- \succ L. mutabilis landraces presented significantly higher Hp(0.21-0.26) than blue lupin (0.14) and white lupin (0.17-0.20) cultivars (*Tukey's* HSD ($p \le 0.05$)). \succ The higher H_p (0.26) presented by LIB201 and LIB203. \succ There was a discrimination among the three lupin species (Figure 2). > All L. mutabilis populations grouped together except LIB208 (Figure 2).

Figure 2. The first 3 principal axes of PCA explained 51.61% of the total diversity.

LIB201

LIB206

LIB22

LIB208

cv Polo

PC3 (9,87%)

cv Multitalia

CONCLUSIONS

Lupin populations tested can therefore be cultivated and be productive under a Mediterranean climate and alkaline, calcareous soil conditions. Furthermore, they are characterized by a remarkable amount of between and within population diversity and therefore consist a valuable source of desirable traits for breeding.

REFERENCES

Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70, 3321–3323

ACKNOWLEDGMENTS

"This project has received funding from the Bio-based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 720726"